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DEFINITION OF SYMBOLS

Definition
constant defined in Appendix A
Airy function '
speed of sound
orifice discharge coefficient
orifice diameter
orifice inertial length defined by Eq. (24)
cavity diameter '
small parameter [p(wLe)?/Pil™2
special functions defined in text
special functions defined in text
acoustic wave number (w/c)
constant defined by Eq. (7c)
cavity depth
resonator characteristic length

ratio of orifice maximum velocity to speed of
sound (q/c)

special constants defined in Appendix A

sound pressure amplitude

maximum orifice outlet velocity

radial coordinate

resonator specific acoustic resistance

orifice diameter based Reynolds number (wd?/v)
characteristic length based Reynolds number (wLg?/v
small parameter defined in Appendix A

orifice area (mwd?/4)

sound pressure level

time

time variable defined in Appendix A

radial polar and azimuthal acoustic particle
velocity components

volume of resonator cavity

resonator specific acoustic reactance
special functions defined in Appendix A
resonator specific acoustic impedance
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Symbol Definition

resonator absorption coefficient defined by Eq. (63)
small parameter (wlLg/c)

small parameter [Pij/p(wle)?] defined by Eq. (32)
fluid kinematic viscosity

fluid coefficient of viscosity

fluid density

sound wavelength

sound radian frequency

spherical polar angle
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spherical azimuthal angle

dci= -odic phasé angle difference between the incident and
cavity sound pressures (Pc/Pj=|Pc/Pileidic)

transformed time coordinate defined by Eq. A-15

T transformed time coordinate (n/2-t); also
orifice thickness

=

o] orifice to cavity area ratio (d/D)?

Subscripts

e effective

i incident (sound field)

o lowest order

1 first order

c cavity

ci refers to difference between cavity and incident
sound fields

ori referes to resonator orifice area-averaged value

res denotes resonance

T refers to reflected wave

Superscripts

() denotes time differentiation

() denotes differentiation with respect to the
independent variable, also denotes acoustic
quantities

()* denotes dimensional quantity



SUMMARY

A semi-empirical fluid mechanical model of the acoustic be-
havior of Helmholtz resonators is presented which predicts impe-
dance as a function of the amplitude and frequency of the incident
sound pressure field and resonator geometry. The model assumes
that the particle velocity approaches the orifice in a spherical
manner. The incident and cavity sound fields are connected by
solving the governing oscillating mass and momentum conservation
equations. The model is in agreement with the Rayleigh slug-mass
model at low values of incident sound pressure level. At high
values, resistance is predicted to be independent of frequency,
proportional to the square root of the amplitude of the incident
sound pressure field, and virtually independent of resonator geometry.
Reactance is predicted to depend in a very complicated way upon
resonator geometry, incident sound pressure level, and frequency.
Nondimensional parameters are defined that divide resonator impe-
dance into three categories corresponding to low, moderately 1low,
and intense incident sound pressure amplitudes.

The two-microphone method was used to measure the impedance

of a variety of resonators. The data were used to refine and verify
the model.
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1. INTRODUCTION

Helmholtz resonators are currently being used as devices to
control the intense sound fields generated within jet engines. Des-
pite its extensive application, the acoustic behavior of the Helmholtz
resonator is not well understood. As part of the NASA Lewis Research
Center Basic Noise Research Program, a fluid mechanical model has
been derived describing the acoustic behavior of the Helmholtz reson-
ator as a function of resonator geometry, incident sound pressure
level and frequency.

Rayleigh! credits Helmholtz as the originator of the first
theoretical analysis describing the acoustic behavior of small cavity-
backed resonators - approgriately called today the Helmholtz resonator.
In a recent paper, Junger® reviewed briefly the historical use of the
Helmholtz resonators. Apparently, they were used by the Greeks to
provide for a reverberation time in their open-air theaters. They
were also used in Swedish and Danish churches as early as the thirteenth
century.

Rayleigh predicted the impedance of cavity-backed orifices by
using the concept of lumped elements in a simple slug-mass mechanical
oscillator analogy. His model is essentially non-fluid mechanical
but predicts quite accurately resonance frequency when an empirical end
correction is added to the slug mass. Rayleigh's derivation is quite
straight-forward. He assumed that the mass contained in an
orifice of thickness 1* and diameter d* moves as a solid body when
excited by an incident sound field. Crandall® was one of the first
to use fluid mechanical concepts to analyze the behavior of the sound
fields near orifices. He solved for the friction resistance for the
case of very long thin orifices (i.e., > by assuming that the flow
within the orifice is viscously fully-developed, one-dimensional, and
excited by an oscillatory driving pressure gradient that is independent
of the orifice axial coordinate. In a later study, Ingard* modified
Crandall's solution by including additional terms due to frictional
losses over the wall containing the orifice. Based on both Crandall's
earlier work and on further experimental and analytical studies, Ingard
derived the following approximate prediction of the impedance of Helm-
holtz resonators exposed to weak sound waves

M| KR 8y * ,
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z 2m (3& ( ) @w ¢ 1+0.625(F5) VE* )
——— \ i J “ : T J
radiation VISCOUS inertial stiffness

The <mpedance, as predicted by Eq. (1), Zs comstant independent
of the amplitude of the ineident sound pressure for a specified fluid,
sound frequency, and resonator geometry. Herein this will be called
"linear" impedance. In 1935, Sivian® observed that at high sound
pressure amplitudes, the impedancesof Helmholtz resonators are not
constant but, instead, are strongly affected by the amplitude of the



incident sound pressure. Herein, this will be called "nonlinear"
impedance. Sivian observed experimentally and confirmed theoretically
that the acoustic resistance of resonators are, at sufficiently high
sound pressures, linearly proportional to the acoustic particle vel-
ocity in the orifice. Sivian's studies prompted a variety of theoreti-
cal and experimental studies to understand and predict the behavior

of Helmholtz resonators at high sound pressure levels. Mellin® has
recently reviewed the historical development of most of this work.

In terms of predicting the nonlinear behavior of Helmholtz resonators,
the work of Ingard and Ising’, Sirignano®, Zinn® and Hersh and
Rogers?!’ are particularly important.

Ingard and Ising conducted a detailed experimental investigation
of the nonlinear behavior of an isolated orifice. By measuring simul-
taneously the amplitude and phase of the sound pressure within the
cavity and the particle velocity within the orifice (using a hot wire
apparatus) they concluded that for low cavity sound pressure levels,
the orifice resistance and reactance were in essential agreement with
that predicted by Rayleigh's slug-mass model. At high cavity sound
pressure levels, the measurements showed that the orifice resistance
varied Zinearly with orifice (centerline) particle velocity; the
measurements also showed that the orifice reactance was very insen-
sitive to the cavity sound pressure level decreasing at the very high-
est measured cavity sound pressure levels to roughly one-half its
linear value. Ingard and Ising interpreted the orifice resistance
data in terms of Bernouilli's Law suggesting that the flow behavior
through the orifice is quasi-steady. The hot-wire measurements
indicated that at these high sound pressure levels, the flow separates
at the orifice forming a high velocity jet. Thus during one half
cycle, the flow incident to the orifice is irrotational, but is highly
rotational (in the form of jetting) after exiting from the orifice.
During the other half of the cycle, the flow pattern is reversed.

The loss of one-half of the reactance at these high pressure levels
was accounted for by assuming that one half of the end corre;tion

is "blown" away by the exiting jet (in their experiments t¥d<<1

hence from Eq.(1) most of the reactance is due to the end correction).
Ingard and Ising also measured the particle velocity as a function of
axial distance from the orifice. They found that the inflow velocity
rapidly decayed to very small values at distances of about two to
three diameters from the orifice.

Initially Sirignano and later Zinn, recognizing that Rayleigh's
slug-mass model was incapable of accounting for the jetting of fluid
from the orifice, used fluid mechanical concepts to predict the be-
havior of the Helmholtz resonator. To simplify their models, they
assumed that the characteristic dimensions of both the orifice and
cavity are very much smaller than the incident acoustic wavelength
and, further, that the acoustic flew through the orifice is one-
dimensional, incompressible, quasi-steady, and calorically perfect.

Both authors base their models on an integral formulation of
the conservation of mass and momentum applied to two control volumes,
one being the volume bounded by the orifice inlet and outlet surfaces



and the other the cavity. To solve these integrals, they used the
method of successive approximations with the first order solution
corresponding to the linear case of very small sound pressures inci-
dent to an orifice. The orifice nonlinear behavior is introduced
through the higher order terms and represents only a second order
approximation to the (linear) first order solution. Thus their
conclusions apply only to weakly nonlinear acoustic pressures and not
to the intense sound pressures existing within rocket chambers or

jet engines, the intended application of their models.

Hersh and Rogers assumed that the acoustic inflow in the immediate
vicinity of an orifice can be modelled as a locally spherical flow.
Near the orifice, the particle flow is to a first approximation, unsteady
and incompressible-referred to as the near field. An analytical
model was presented of the behavior of orifices exposed to intense
sound pressure fields which showed that orifice impedance to be
dominated by particle flow nonlinearity. This model establishes ex-
plicitly the quasi-steady behavior of orifices exposed to intense
sound fields.

The approach used by Hersh and Rogers is applied in Section 2
below to derive a semi-empirical fluid mechanical model of the non-
linear acoustic behavior of Helmholtz resonators. In Section 3, ex-
perimental data, obtained using the two-microphone method to measure
resonator impedance, is used to both support and verify the model.
The principal findings of the study are summarized in Section 4.

2. FLUID MECHANICAL MODEL

A fluid mechanical model of the behavior of Helmholtz resonators
is described below. The model has been idealized sufficient to permit
mathematical solution without compromising important physical character-
istics. The derivation is divided into two categories, one correspond-
ing to weak or moderately weak incident sound fields and the other to
very intense incident sound fields.

The model is based on the following key assumptions:

(1) Sound waves approach the neighborhood of the resonator ori-
fice in a spherical manner. The three-dimensionality of the sound
field will account for the large changes in acoustic particle velocity
measured by Ingard and Ising. For this assumption to be wvalid the
orifice diameter must be very small relative to the incident sound
wavelength (i.e., d<<X*- orifice geometry is defined in Fig. 1).

(2) The acoustic pressure and density are adiabatically related.
Further, the incident sound is simple harmomnic.

(3) The amplitude of the incident acoustic pressure is small
compared to the ambient pressure.



2.1 Approach

Consider the special case of a sound wave approaching a resonator
with its wavenumber k perpendicular to the plane surface containing the
orifice (i.e., the cross-hatched surface shown in Fig. 2a). From this
and assumption (1) above, the incident sound particle velocity field
near the orifice is modelled as spherical and independent of the
azimuthal angle ¢. A sketch of the flow is shown entering the resona-
tor cavity .in Fig. 2b. The principal advantage of the model is its
simplification of the governing equations of motion. Its principal
disadvantage is its inability to accurately model the particle velocity
entering the resonator cavity. This is illustrated in Fig. 2b wherein
the spherical inflow model is singular at the virtual origin r=0;
deviations from a truly spherical flow are required in order to permit
the flow to enter the orifice in an axial manner. To avoid this sin-
gularity, the (spherical) flow field is truncated at a hemispherical
surface rtL% defined such that at this surface the particle volume
flow rate is equal to the actual particle volume flow rate entering
the cavity. The consequence of this limitation is that the character-
istic surface radius L% must be determined experimentally. This is
discussed in more detail later.

The spherical inflow model described above is assumed to be valid
only during the half-cycles corresponding to particle inflow. The hot-
wire measurements conducted by Ingard and Ising showed that at moderate
and higher sound pressure amplitudes the outflow particle velocity
field separated within the orifice forming a highly rotational jet.
They further observed the particle flow to be symmetrical with respect
to inflow and outflow. Thus a solution valid during the inflow half-
cycle should via conservation of particle mass into and out of the
cavity be valid throughout the cycle.

The background material described above provides the basis for
the following approach. First continuity and momentum conservation
equations governing the motion of a harmonically driven spherically
symmetric particle inflow are derived. Second, the resulting equations
of motion are normalized by appropriately scaling the dependent and
independent variables. The resulting equations are then simplified
by retaining only the important terms. Separate equations of motion
are then derived for the "linear'" case (constant or almost constant
impedance) and the "nonlinear'" case (variable impedance). Third,
the equations of motion are solved so as to satisfy two boundary condi-
tions imposed by the pressure field. One is that the near field pres-
sure must merge smoothly (asymptotically) into the harmonically oscil-
latinge'ncident pressure. The other is that at the hemispherical sur-
face r=I% (see Fig. 2b), the near field pressure must be equal to the
instantaneous cavity pressure.

2.2 Derivation of Governing Equations

The flow field is assumed to consist of a steady-state part
containing no flow and an oscillating part. Assuming spherically
symmetric inflow, the conservation of oscillating mass and momentum



may be written approximately
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where ( )'denotes fluctuating terms.

Equation (2c) shows that the pressure gradient in the @
direction is proportional to *¥which is quite small for most fluids
of interest (viz. air). Hence the momentum balance in the 8 direction
will be ignored.

Equations (2a,b) can be simplified by proper normalization of
the various terms and retaining only those of importance. The idea
here is to try to anticipate the order-of-magnitude of the changes of
the various terms in order to rank order their relative importance.
To start with, the amplitude of the incident sound field Pi¥is
assumed to characterize the acoustic pressure change external
to the resonator orifice, Pi/c** the density change (recall that the
acoustic pressure and density are adiabatically related), qg*the particle
velocity change, L§ the length scale and w*'the time scale.

The selection of the magnitude of the various normalization
quantities above requires special comment. The hemispherical radius
L% is chosen to characterize the scale of the displacement of the
sound particle field near the orifice. Because of the spherical
inflow assumption, the behavior of the particle displacement Lp will
be determined indirectly from measurements described in Section 3.
The time scale w*™'is obvious as the response of the cavity is driven
by the harmonic incident sound field. The selection of P;j and qtis
based on the experimental findings of Ingard and Ising. Their experi-
mental data showed that two distinct regimes exist depending upon
the amplitude Pj®* of the incident sound field. For sufficiently low
values of Pi* (the "linear" regime wherein orifice inertial reactance
is much larger than orifice resistance),

Flogueq; & - «| (32)
1 e q' aS'L*e e*(uﬂi_te)z

and for sufficiently high values of P*(the "nonlinear" regime
wherein orifice resistance is much larger than orifice inertial
reactance),
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Introducing the nondimensional variables r, t, u, p, p
defined as

- 1 * 3 * P‘*
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the continuity and momentum equations may be written
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The importance of the various terms in Eqs. (5a,b) are
determined solely by the magnitude of their coefficients (recall that
the dimensionless terms have been normalized to be of order unity).
To rank order them, the governing equations are divided into
the linear regime where Eqs. (3a) apply and the nonlinear regime
where Egs. (3b) apply.

Consider first the linear regime. The small parameters € and B
are introduced where

= P* . = aju%
E_W«" P < (6)

Assuming that Le* is of the order of d¥*, then B<<l for most aircraft
applications. B is shown below to be a measure of the importance of
fluid compressibility. Substituting these parameters into the
continuity and momentum equations, the behavior of weak sound waves
approaching the resonator orifice may be written

ol
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An examination of the various terms in Eq. (7a) the continuity
equation, shows that: 1) the second term, which represents the
divergence of the volume velocity, is of order unity and is by far
the most important term; 2) the first term, which is a measure of
the fluid compressibility, is very much smaller than the second term
and 3) the third term, which takes into account the fluid nonlinearity,
is the the smallest. Thus the flow field for the case of weak sound
waves approaching the resonator orifice behaves predominately as
unsteady and incompressible. This incompressible behavior of the flow
field near the resonator orifice is consistent with the large changes
in acoustic velocity measured by Ingard and Ising. Since the changes
occurred over a distance very much smaller than the sound wavelength,
they represent hydrodynamic rather than acoustic changes.

For the nonlinear regime, it is convenient to introduce the
small parameters M and E defined as

2 q‘ z_ p,* . _ *((SL% 2 |
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The restriction that M2<<1 follows from assumption (3) and Eq. (3b)
above. The restriction that E<<1l follows from the assumption that
the amplitude of the incident sound pressure field is large. Substi-
tuting the parameters into the continuity and momentum equations
yield

M E I + < a " w) + M u _éJ = (93)
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Consistent with the linear regime, the continuity equation governing
the nonlinear regime also behaves as i1f the sound field is unsteady
and incompressible. Equation (9a) differs from Eq. (7a) in one interest-
ing aspect. The third term in Eq. (9a) which is a measure of the
importance of nonlinearity is larger by the amount 1/E than the first
term which is a measure of the importance of compressibility. The
converse is true for the linear case. Thus, the normalization for



the two regimes reveals an ordering among the various terms that is
consistent and, therefore, lend credence to the validity of the
approach.

2.3 Boundary Conditions

The governing equations of motion must satisfy two boundary
conditions both of which are imposed upon the fluctuating pressure
field during the half cycles corresponding to particle flow into
the cavity. The boundary conditions provide the connection missing
in previous studies between the instantaneous pressure within the
resonator cavity and the harmonically oscillating driving pressure
incident to the resonator orifice. One of the boundary conditions
requires the near field pressure to merge smoothly (asymptotically)
into the incident pressure. In dimensional terms, this boundary
condition is written as

Limit (9= P cos (@ )

r —>o00 (10&)
In nondimensional terms, Eq. {10a) becomes
Limit P(r“,-l:>=cos(JC> (10b)

r—>co

Using the Ingard and Ising hot-wire measurements as a guide, 1¥= o
corresponds practically to a radial distance of about three orifice
diameters. Thus, when r*> 3d®the oscillating pressure field will be
assumed to be outside the near field influence of the orifice.

The other boundary condition is considerably more complicated
principally because of difficulties associated with the spherical
inflow model. This boundary condition requires the fluctuating near
field pressure at the hemispherical surface r*= L& (recall that at
this surface the particle volume flow rate 2wL3%q*is equal to the
actual volume flow rate entering the resonator cavity) to be equal to
the instantaneous cavity pressure. The connection between the time
pressure history of the cavity pressure and the particle flow rate
into the cavity follows immediately from the adiabatic relationship
between the cavity pressure and density written in dimensional terms,

0P _ 20t | | genm e Qi) (11la)
ot* ot* V*

where Zﬂﬂészr=E%,€5 is the instantaneous volume velocity flow rate
entering the cavity volume V¥ The negative sign is used because q*

is negative for inward directed spherical flow (see Fig. 2b). Using
Eq. (4) to nondimensionalize Eq. (11la) yields
2
e - — |2mle é‘é‘{] w(r=1t) (11b)
ot SVPX



There are separate boundary conditions for the linear and
nonlinear regimes depending upon the relationships between Pj®and q
given by Eqs. (3a)and (3b). For the linear regime, the nondimensional-
ized boundary condition is

_a_ Fc(r‘=l,£)=—|:Q~TTLZC*Z]u(P:I,‘t) (12)

*

a{_ w*zv*
For the nonlinear regime, the nondimensionalized boundary condition is
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Equation (13a) can be rewritten in a more convenient form - this will
be clear later-by replacing q*by vP# p* from Eq. (3b)and using Eq. (8)
to yield

ﬁ_ Fc(r:l)'t>=—E<_%%Z‘—'zg_z>u(f‘=|;t> (13b)

There is one limitation to the derivation of the cavity pressure
boundary conditions described by Eqs. (12) and (13) that must be dis-
cussed. Recall that in their derivation, the cavity pressure responds
both adiabatically and instantaneously (i.e., hydrodynamically) to
the particle volume flow rate entering the cavity. This means that
the cavity pressure cannot distinguish different spatial distributions
of entering particle flow (e.g. spherical or axial). For application
to the proposed spherical inflow model, angular effects in the 6 direc:
tion associated with boundary layers over the side walls and orifice
{see Fig. 2b) will have to be accounted for before application of
Egqs. (12) and (13). This will be discussed in more detail in Sections
2.4 and 2.5.

2.4 The Linear Regime

The solution to Eqs. (7a) and (7b) subject to the boundary condi-
tions specified by Eqs. (10b) and (12 ) describe the behavior of
Helmholtz resonators exposed to weak or moderately weak sound fields.
In the derivation that follows, the effects of frictional losses due
to the viscosity of the flow near and within the orifice are assumed to
be inverselyproportional to the square root of Re(=6122/vﬁ a char-
acteristic length based Reynolds number). This assumption is based on
the recent study of the acoustic behavior of orifices by Hersh and
Rogers, which showed that the retarding action of the fluid viscosity
acts, for a given driving excitation pressure, to decrease the magnitude
of the acoustic velocity pumped through an orifice by an amount propor-
tional to the local boundary layer displacement thickness along the

orifice side walls. This is equivalent to assuming that the oscillating



boundary layer flow is laminar. Adoption of these assumptions will
result in a particle inflow that is compatible with the cavity
pressure response boundary condition defined by Eq. (12). Recall
that in the derivation of these boundary conditions, the spherical
particle inflow was assumed to be independent of the angle 6.
Incorporating the above, Eq. (7b) may be rewritten

ou 0
é{+£u M+(l EFP)3r+V'l;_eu =0 (7¢)

Here K is a constant that will be evaluated experimentally. Equations
(7a) and (7c) are further simplified by retaining terms to order €
{since B<<1l, the effects of compressibility would only weakly affect
resonator behavior-hence are ignored) to yield

,;_(r*zu>=o (14a)
r
U, gudu+dp+ K uU=0
ot or dr Re (14b)
Integrating Eq. (14a) with respect to r yields
w(r,t) = —F(t; &Re) /et (15)

where F(t;e;Re)is an arbitrary function of integration. The negative
sign again denotes that the particle velocity is directed inwards
towards the resonator orifice. Substituting Eq. (15) into the
radial momentum equation (Eq. 14b) yields

O (F+ EF L pr K Y=o (16)
or \ T 2r4 \/E; r _

The (') notation denotes differentiation with respect to time.
Integrating with respect tor y1e1ds

20t \Re r

where T(t) is another arbitrary function of integration. From application
of the boundary condition given by Eq. (10b), T(t)=cos(t). The boundary

10



condition given by Eq. (12) relates the instantaneous cavity pressure
Pc(t;Re) to the instantaneous particle velocity u(r=1,t) entering the
orifice at r=1 (recall again that to avoid the singularity at r=0
associated with the spherical inflow assumption, the flow was arbi-
trarily truncated at the hemispherical surface r=1). To incorporate
this boundary condition, Eq. (17) is differentiated with

respect to time, r is set equal to unity (r=1) and Eq. (12) and
T(t)=cos(t) substituted to yield

Faf X +£F) |5+<°__*221T'f_=>l?=—sin t
<V§§ V*u*2 ( ) (e)

Equation (18) in its present form is misleading. It is valid
only during the half-cycles associated with particle inflow. To
properly model the particle velocity throughout all cycles Eq. (18)
should be written

f.:.-t-(.\TE_R_ + EIF])F + (C___*:'/fﬂ;l;é) F= —.sin(w‘:) (18a)
e w

The motivation here is that during each half cycle the coordinate
system must be switched to the appropriate side of the resonator
orifice corresponding to particle inflow. While the_ linear terms
account for this automatically the nonlinear term,K €FF does not. An
alternate explanation is that the coefficient of F represents the
system damping which must always be positive.

The solution to Eq. (18a)yields directly, upon combining it
with Eq. (15), the time and space behavior of the acoustic particle
velocity field incident to the resonator. Because of its complexity,
only an approximate solution will be sought. An analytic solution
is possible, however, for the special case £ = 0.

2.4.1 Analytic Solution for € = 0

Setting ¢ = 0, Eq. (18a)reduces to the linear equation

F+ K f-.7+/C*22TfL’E>F = — sin () 9
m \ V¥w*2 < (19)

Only the particular solution is of interest because the homogeneous
solutions exhibit a time decay proportional to exp[-Kt/2v/Re], hence
do not contribute to the steady-state behavior.

The solution to the above equation, written in complex notation where
it is understood that only the real part has physical meaning, 1is

11



it
FO) = e (20)
(AR

The particle velocity follows immediately by substituting F(t)
above into Eq. (15)

—eit

ne L+;<(_21TL’236*2>

\/-R—e V*w*"

The impedance of Helmholtz resonators is often defined in the

literature as the (complex) ratio of the incident driving acoustic
pressure (Pj=ell) to the "orifice area-averaged'" particle velocity
(uori). To use this definition, it will be necessary to relate the
particle velocity at the reference hemispherical surface of area
(2wL%2) to another hemispherical surface whose area is equal to the
orifice area (md*¥4). Using Eq. (15) which represents the conserva-
tion of particle mass for spherical inflow, the orifice area averaged
particle inflow is

w(rt;Re)= (21)

Uori = |2 Le* u(r:l,f;Re)=—s(L_*E>2e'-+ _K_ﬂ([_ml_‘éc*z)
£ ) RN VS

The impedance of the Helmholtz resonator follows immediately to be

(e sm e s izl
U ori 8 \Le \/_R_; 8 \Lle V *w*?

From Eq. (22), resonance is defined to occur at zero reactance.
This occurs at a radian frequency given by

*2 * 2 _ ZTTL*eC*z
es = ==~

v (23)

Equation (22) provides for a rigorous definition of the characteristic
length L§. Setting the reactance specified in Eq. (1) equal to zero
yields the following well known expression for the resonance frequency
of Helmholtz resonators,

x 2 _ md™? c*2
Wres = %
4 \Vde

(23a)

12



where

*
di - % 0.85d
d%
|+0.625 _[_)_;>

(24)

is interpreted as the orifice "effective" inertia length. Combining
Eq. (23a) and Eq. (22) and solving for the characteristic length
1% leads to its definition :

L’é :V*Lo*r'ezs = _L(d*z) (25)

21rd* 8 \d%&

Thus the characteristic length L§ is independent of the cavity volume
V¥or the details of the incident sound pressure level and frequency -
it is dependent primarily upon the orifice thickness and diameter.

Equation (25) can be used to define an orifice discharge coeffi-
cient (Cp) characteristic of Helmholtz resonators operating in the
"linear'" regime. The discharge coefficient is defined as the ratio
of the orifice area-averaged particle velocity to the maximum particle
velocity entering the cavity. This definition is equivalent to that
used to define the discharge coefficient of orifices exposed to steady -
state flow. Since the maximum particle inflow occurs at the hemispher-
ical surface (r=1), the discharge coefficient is easily computed to be,

Co= Hori = 27TL-’:32 = 1 d%\*
D— ®2 a #* (26)
U max _7Id_ 6 \da
p3

Since dgdé for most orifice geometries of practical interest to the
aircraft industry, Cp is a small number. Mellin's review paper shows
that low values of steady state discharge coefficients occur whenever
the flow through the orifice is viscously controlled. This is cer-
tainly consistent with the above derivation which shows the orifice
resistance to be controlled by laminar boundary-layer 1losses.

With L& defined by Eq. (25), the final form of the nondimensional-
ized resonator impedance is

a o 45V K . x2 g%
(o =0 1 (550

In dimensional terms, the resonator impedance is

(2 )ors = 8K (S2)' G+ i (rust -%‘) (27b)

13



*,
where Sind2/4 is the orifice cross-sectional area. Equation (27b)
compares favorably with Eq. (1), the slug-mass model providing the
constant K is appropriately defined and the radiation resistance
term in Eq. (1) is negligible.

The amplitude and phase difference between the incident and
cavity sound fields are derived by combining Eqs. (12) and (21) and
evaluating them at r=1. Using complex notation where again only the
real part has physical meaning and noting that 3/3t=i, then the
instantaneous cavity pressure P. is

(‘*ﬁes) <w res [ (‘*’res)]
Re ~
2
K +]|- wr‘es 2
Re Cw¥,
Recalling that the nondimensionalized incident sound field Pj=eit,

then the amplitude and phase differences between the incident and
cavity sound fields are

(It)-l Pe = et

P wz)e*s)z
c -
P \/EK::n» [1- _e%;i)ﬁ]z (28a)

and
K

Gic = = bei = —tan __VRe | (28b)
[~ (5]

At resonance, the amplitude and phase angle differences between
the cavity and incident sound fields simplify to

PC* Re
el=4 and , = 90 degrees (28c)
pT K b 3

Thus at resonance, the amplitude difference between the cavity and
incident sound field is due primarily to viscous boundary layer losses
retarding the fluid motion near and within the orifice.

To summarize, the classical Helmholtz resonator impedance derived
originally by assuming that the particle mass within and near the ori-
fice moves as a solid body (i.e., the lumped mass model) upon excita-
tion by an incident sound field has been rederived from fluid mechani-
cal conservation laws. This has accomplished two important objectives.

14



First, it establishes the validity of the spherical inflow model
and second, it provides a logical model to understand the nonlinear
acoustic behavior of the Helmholtz resonator.

2.4.2 Weakly Nonlinear Solution

The effects of moderate increases in incident sound pressure
levels are modelled by Eq. (18a). An approximate solution is sought
in terms of a regular perturbation expansion in powers of e, the
first two terms of which are

F(’t) Rc;&)ﬁ F°<f;Rc.)+E FI (‘t) Rc)+ . O(ez)

Collecting coefficients of the various powers of e, the leading term
(e®°=1) is identical to Eq. (19) while the terms proportional to € are

ﬁl + __ls. ?l + wres F| = - Fo
VRe w

(29)

where ohes is defined by Eq. (23).

For this approach to be valid, |eF;(t;Re)|[<|Fo(t;Re)|. This means
that only modest deviations from the "linear" solutions described in
Section 2.4.1 above are sought. This will place upper bound restric-
tions on the magnitude of the amplitude of the jincident sound field.
Nonlinear solutions only for the special case d‘wres corresponding to
resonance will be sought. This will simplify considerably the math-
matical details and will provide insight regarding the effects of
nonlinearity for the most important application of the Helmholtz
resonator, at resonance. Substituting the real part of Eq. (20) for
Fo(t) into the RHS of Eq. (29) yields the following solution for the
special case of w=w¥es,

F, ()i Re)= _Esin@) _ = cos (2t) .
6K? [I+it<_‘] 2&{“15_‘] (30)
Re 9 Re VR_c 9 Re

where the (-) sign is valid for those half-cycles corresponding to
particle inflow and the (+) sign for the particle outflow.

To predict resonator impedance, the first harmonic or fundamen-
tal component of Eq. (30) is required Using standard Fourier analysis,
it is straight-forward to show that the fundamental components
are, approximately, given by

F'l ({:3 Rc)“—' — 2cos(®) - 4sin(f)
27 T _K onmK

fre R

(30a)
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Combining zeroth and first-order terms, written in complex notation
where it is understood that only the real part has physical meaning,
yields

(31)

F(Qﬁ eit Re [l~e 2 445)}

K Ik

For Eq. (31) to be valid, the constraint that |eFj(t)|<|Fo(t)]| trans-
lates into the following constraint on €,

27 K

£l 2 _i4W_3_§ 24EVE<| s, £ ¢ _K
< -

This constraint on & can be translated directly into the following
constraint placed on the upper bound of the amplitude of the incident

sound field
*
~_£i___ < K22
Flwd®)* 32 juide

where, from Eqs. (6) and (25)

(32)

8 64 ( ) F(W*d*)z

Following the same pfocedures used in deriving the linear
resonator impedance defined by Eq. (27a), the resonator orifice-area
averaged impedance is, to order €,

. dg¥ K 2 :
Z)w = 8 _S) I+ gl -1 == ) 33
C2).. <d* [Re ( 27 ) o © (332)
Expressed in dimensional terms,

CBari= o (@) YT (s 9 SR o

It is clear from Eq. (33) that the effects of moderately weak non-
linearity are to increase only very slightly the resonator resistance
and to decrease slightly the reactance. Following the same procedures

16



used to derive Eqs. (28a,b,c), the amplitude and phase differences
between the cavity and incident sound fields are

PX-
el ~ \[Re (1”_;5_) (342)
K2 27m,

P

and

by = +an” | 97K (34b)
4€Re :

From Eqs. (34a) and (34b) it is clear that both the ratio of sound
pressure amplitude and phase angle differences between the cavity
and incident sound fields decrease with inereasing sound pressure
levels.

The decrease of reactance predicted by Eq. (33) is in agree-
ment with that measured by Ingard and Ising. Ingard and Ising be-
lieved that the decrease was caused by a reduction of effective
orifice particle inertia length (d&) related to particle flow jetting
from the orifice. The derivation shown below supports this interpre-
tation. Combining the reactanceterms of Eqs. (27b) and (33b) yields,
in dimensional terms,

#*2 ¥

* * % 4% %
X o~ _pceS o 4 * X * 35
( L es u.gesdc _e___ o € /ow (35)

¥* *
vwres

Now assume that the effective orifice particle inertial length can
be expanded as a power series in € so that to order €,

s = (49), + €(de) (36)
Substituting Eq. (36) for de* into Eq. (35) yields, to order e,

g, (de) * 6‘0 Fes (38) —peEST

a2 COX

V* *
The solution for (d*), where (Jw* = ééc“S/V* Wres , is
() =~ - 2£.(d8) > (@) _(as)o e (362)

Thus, the effective orifice inertial length (d*) is shown to decrease
with increasing incident sound pressure level in accord with the

17



measurements of Ingard and Ising. The reduction of (de) suggests
that flow nonlinearity transfersstored inertial energy into dissi-
pated kinetic energy - it apparently does not affect stored (cavity)
potential energy.

2.5 Nonlinear Regime

Equations (9a) and (9b) govern the behavior of Helmholtz resona-
tors exposed to intense soqu fields. In this regime, the character-
istic Reynolds number Re = qLe/v*ls 1ndeBendent of frequency in con-
trast to the Reynolds number Re = wLe /vicharacterizing the linear
regime. Since the Reynolds number is fairly large in the nonlinear
regime (Ingard and Ising measured particle speeds as high as 50 m/sec),
the contribution of the viscous terms will be ignored.

Retaining terms only to order E, Eqgs. (9a) and (9b) simplify to

ji r*u)=0
or ) (37a)
EOU 4 uduU + 9p =0

T . —a-f— (37b)

The particle velocity follows immediately from Eq. (37a) to be

u(r,t;E) = - G(¢;E) (38)
r\l

where G(t;E) is an arbitrary function of integration. Substituting
Eq. (38) into (37b) and integrating with respect te the radial coordi-
nate r yields

EG + l8la 4 - z@) (39)

r 2r4

where f(t) is yet another arbitrary function of integration. The
absolute value is imposed upon G to insure that particle jetting
absorbs acoustic energy throughout the cycle.

The pressure p(r,t) must satisfy the boundary conditions speci-
fied by Eqs. (10b) and (13b). Applying the boundary condition speci-
fied by Eq. (11b), it is clear that f(t) = cos(t). To apply the
boundary conditionspecified by Eq. (13b), Eq. (39) must first be
differentiated with respect to time with Eq. (13b) substituted for
ap/ 3t (r=1,t) to yield,

[G + <2’T*‘—fzc )G] + 161G = — sin(t)

(39a)
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Because Eq. (39a) is nonlinear, it is not possible to readily
identifyits resistive and reactive components.

The solution to Eq. (39a) describes the time behavior of the
particle velocity entering the cavity. It is not possible to seek
approximate solutions by expanding G(t;E) in powers of E. This
kind of approach becomes singular for values of t = (2n-1) w/2,
n=0, + 1, + 2,... To illustrate this, the function G(t;E) is
expanded in powers of E, the first two terms of which are

G(t;E) =G @)+ EG (+)+0(E?) (40)

Substituting Eq. (40) into Eq. (39a) yields the following approximate
solutionns

G, (*) = VZ cos(t) ; G (*)= -Ean *) - <‘27T’£-*2 ><{- -H:3/6> (41)

It is clear that the solutions Go(t) and G:(t) are not valid
near t = (2n-1)7n/2; they are valid only near t = 2m7n. The methods
of singular perturbation theory will be used to remove the singularity
resulting in an approximate solution valid throughout the entire cycle
(recall that Ingard and Ising's hot-wire measurements showed the oscil-
lating orifice velocity to be symmetrical over each half-cycle). The
procedures for deriving the approximate solution are (1) the solution
given by Eq. (39) will be assumed to be valid only over the part of
the half-cycle defined by (4n-1/2)w/2<t<(4n+1/2)n/2, (2) a second
approximate solution will be derived valid for the part of the half-
cycle defined by (4n-1)7/2<t<(4n-1/2)7n/2 and (4n+1/2)7/2<t<(4n+1)7/2
and (3) a third approximate solution will be derived valid in the very
thin (in time) region near t=(2nzl)n/2. The method of singular per-
turbation theory will be used to derive the third solution. Finally,
with the approximate solution valid threughout the half-cycle range
(4n-1)mw/2<t<(4n+1)7n/2, the Fourier coefficients a; and b; will be
calculated. The Fourier coefficients will then be used to predict
resonator impedance.

Following this procedure, the details of which are summarized in
Appendix A, the approximate solution to G(t;E) is
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V* 2

( V2 cos(®) + E [ tan ()~ <27T’—* el ) <f+'b3/6>]

(4n--£-)121 <t (4nr )

. - cot(T) mLlec*
W*E[—Z‘—*Z<2V*L*z /059(+ ) 3 63)}

7,'=<4-n+l)%.’,:-l:;2.'/3 E% < ts%

GC&;E)fB ﬁ

2%E” Yf(7)+ 2% E% Y )

n= “En+1) %}—rf os pn<2

,?./3 E
~ (42)

where Yo¥(n) and Yi1%*(n) are special functions defined
in Appendix A. The solution described by Eq. (42) is used to calcu-
late the Fourier harmonic coefficients a; and b: where

a,(E)x 1.57+0.19E %+ 0(E?) (43a)
and
b, (E)~ E { 0.07 - 0.43 Ln (E)- <27r’—e Cz) (2.55-2.63 E /3)] (43b)
Vw?

With the harmonic components a; and b, specified, the resulting
harmonic component of the acoustic particle velocity, written in
complex notation where again it is understood that only the real
part has physical meaning, is

u(r,t; E): — G(i,lE) = ~€;i: {a,(E)—i b, (E)} (44)

The relationship between the amplitudes and relative phase of
the incident and cavity sound pressure fields are determined by
combining Eqs. (44) and (13b). The ratio of the cavity-to-incident
sound pressure amplitudes and relative phase 1s respectively
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fcz 2Lt & Eul ~|.57E amwle ™ 15
P:‘ V*w*z V*w*z ( a)

and

- - 157 [ 1+0 E%
Pic = — ¢ = —Tan (‘%‘) 2 - Fan” E o.o7—o+3.cn(r[s)~ zrrL‘éz]!" 2.55-2.63E9)[ (45b)
! [ ) (V*w*z )( ) ]

Recalling that E = /p(dJL%)2/P% it is clear that for very high inci-
dent sound fields, |P&|<<]P¥| and ¢cj = 90 degrees. Further, the

ratio |P&/PY| should vary almost linearly with E; the relative phase
angle ¢ci, however, is a rather complicated function of the parameter
E principally because of the term 1ln (E) in the denominator. In
evaluating Eq. (45b), the term -0.43 In(Hwill never become excessively
large because of the constraint that the amplitude of the incident
sound field be small relative to the ambient pressure. Equation QﬁSa)
provides a convenient way to determine the characteristic length Le.
For E small;

)2 157 (i) AT 57 (rite) [T 3
V*o*2 ! Pl.* V* %2 P'l_ * (46)

Pl
Thus, measurements of IPEVPfI, Pf, and o lead directly, via Eq. (46),
to predictions of the characteristic length LY. The details of these
measurements are presented in Section 3. For the remainder of this
derivation, L§ will be presumed to be known.

The resonator orifice area-averaged impedance follows immediately
from its definition to yield

(2),. - g—(g-)‘ [———a‘ L ”"] (47)

at+b*

where the term 1/8(d*/L’é)2 references the particle velocity to the
orifice inlet area md*¥/4 instead of the reference hemispherical area
2wl%?. Substitution of Eq. (43a) and (43b) for a, and b; yields

for the resonator resistance and reactance

(~R>ori * 0.08 (—lc_j’é:->20~ O.IE 5/3) (48a)

21



and

(X) = 0.05 (&) E [0.07-043tnE- (sz* )(z 55- 2635;/_5)1_,__.__‘ .
. [1-0.2E%]

For E sufficiently small, Eqs. (48a) and (48b) simplify to

(_g)or] = 0.08 d*) (49a)
and
# %2 _ f
C'-X)m__l ~ o.os(lfi_g 2 E [0.07—043 Ln(E)—(gc;l;_i:)(z,bs_z_G_g E /3):' (49b)

. . . . . * n
Nondimensionalized with respect to the characteristic impedance pcC),
the resonator resistance and reactance are

% ~ o.os<_fﬁ>z ikl (50a)

P" e Le f)*cf 2

and

d X K2 [
Ko ~ oos(d ><w ){o 07-0.43(n E- ____235*‘; )(2-55‘2'635/’)J (50D)

e*c* L*C C*

Further 1nterpretat10n of the nonlinear impedance as defined
by Eqs. (50a) and (50b) is deferred until the experlmental measurements
leading to the definition of the characteristic length L¥ are des-
cribed in Section 3.
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3. EXPERIMENTAL PROGRAMS

The two microphone method used by Deanand others has been
applied to measure the impedance of the resonator geometries summarized
in Table I. As shown in the Table, the range of the three important
test parameters (vU7d% d7D% d71) were varied approximately one order-
of-magnitude. The purpose of the measurement program is two-fold.
First, it will be used to define experimentally the parameter K
introduced in the derivation of the linear theory (Section 2.4) and
the characteristic length L% introduced in the derivation of the
nonlinear theory (Section 2.5). Second, it will be used to improve
and/or refine the model.

The two-microphone approach and the instrumentation required is
described in Section 3.1 below. The application of the data to the
linear and nonlinear regimes are described in Sections 3.2 and 3.3
respectively.

3.1 Measurement System

A schematic of the instrumentation and test set-up required to
use the two-microphone method is shown in Figure 1. The resonator
consists of a cylindrical cavity of diameter D¥ depth L*¥ and an
orifice of diameter d¥and thickness t*%

Dean derives the following expressions for the resonator
orifice-area averaged resistance and reactance

R* = IOM%S&@ sin Pei (__d_f_)z (51a)
)

ke sin (<X \D*
and
PL (i) =SPL (<)
X*= “lio S 20s 3 cos¢i (é*>2 :
Q*C* Sin(‘*g_*"‘*) D¥ (51b)

where SPL(1i)-SPL(c) represents the sound pressure level difference
(in dB) between the incident sound field and the cavity sound field
and ¢ci represents the corresponding phase difference, The two-
microphone method of measuring impedance requires the simultaneous
measurement of the incident and cavity sound pressure levels and
phase. These measurements are obtained by flush mounting one
microphone at the cavity base and the other flush with the wall
containing the orifice as shown in Fig. 1. It is important to locate
the incident microphone sufficiently far from the orifice to avoid
near field effects (our experience shows that a separation distance
of about 4 or 5 orifice diameters is adequate). The microphone should
be located sufficiently close, however, so that the separation dis-
tance is small relative to the incident sound wavelength; this is
necessary to insure accurate measurement of the incident sound wave
amplitude and phase.
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A schematic of the instrumentation used to conduct the
experiments is shown in Figure 3. To generate incident sound
pressure levels up to 160 dB, a JBL type 2480 driver capable of
producing in excess of 10 watts of relatively ''clean" acoustic power
is used as the sound source. The 2" diameter driver throat is coupled
to the test section by means of a 2" to 4" diameter exponential ex-
pansion, JBL type H-93. Sound pressure levels in excess of 150 dB
exceed the input capability of the GR 1560-P42 preamp. A 10 dB
microphone Attenuator, GR Type 1962-~3200 has been added, which
extends the measurement range accordingly.

The signal generated by the Heath 1G-18 audio generator is
amplified by the McIntosh MC2100 100 watt/channel power amplifier
to power the JBL driver. The audio generator provides a tracking
signal for the AD-YU Synchronous Filter and phase meter system.
The 1036 system filters the two microphone input signals to the
tracking signal frequency % 2.5 Hz. The AD-YU Type 524A4 Phase Meter
reads phase angle between the signals independent of signal amplitudes.
The phase angle output is displayed on the AD-YU Type 2001 digital
volt meter. A General Radio-1564 1/10 octave filter together with a
Heath Type IM2202 DVM is used to record the output signals from each
of the two microphones. Also the two signals are observed on a
Tektronix 533 Oscilloscope to visually note approximate phase and
distortion effects.

The output of the incident microphone channel of the synchronous
filter is used as a control voltage for an automatic level control
amplifier. This control amplifier adjusts the drive level to the
power amplifier in such a way as to keep the incident level comnstant,
independent of frequency and amplitude response irregularities in
the loudspeaker and tunnel.

As a convenience, a triple ganged 5 dB per step ladder attenua-
tor is used to simultaneously increase the power amplifier drive
level and decrease the synchronous filter input signals so that the
control loop of the automatic level control amplifier always has
the same gain. This has the added advantage keeping the levels
at the AD-YU Filter input constant for all testing levels. Since
the AD-YU Filter displays a small amplitude-phase dependency, this
improves accuracy as well as speed of data acquisition. A test of
both microphones mounted flush in the wind tunnel wall showed phase
tracking within + .2° over a sound pressure level range of 70-150dB.

3.2 Linear Regime

3.2.1 The =0 Case

At résonance, the response of the cavity to the incident sound
pressure field was shown in Eq. (28c) to be proportional to the
square root of the Reynolds number

x X2

‘;C* » K ‘/i‘)’;ji L= 2 (28a)
i * 8de
I

res
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The only unknown in the above equation is the parameter K. According-
ly, tests were conducted to determine K experimentally. The test
procedure was straight-forward. Only those resonator geometries that
satisf%ed the constraint that e<0.1 were considered (recall that
E==64@A®2[§¢%Jﬂﬂ€] ~ the particular value €<0.1 will be explained
later). ~ The geometry of the resonators tested are summarized in

Table II. The various values of K tabulated were determined by
measuring |P&/P}|res at resonance for an incident sound pressure
amplitude of 704dB. An approximate fit to the data is

K =~ 0.8

5 B (s2)

Figure 4 shows lPé/P;lres to be predicted to within 10% accuracy
using Eq. (52) to predict K.

With X specified by Eq. (52), the final approximate expression
for resonator impedance, written in dimensional terms, is

d’&)z % K2 X%
% de . S
-72) . ~| 6403% IS+ | 8995 - @c
( ors l+3(__f:) F P e v*w* (53)
[\ d* —~ J [ ~ —
Resistance Reactance

where (dg/g) is defined by Eq. (24) and s¥= ﬂ&a/4. Assuming radiation
resistance to be negligible and d¥D%<1, the resistance as predicted

by the real part of Eq. (53) differs from that predicted by Eq. (1)

by less than 10% over the range of resonator orifice geometries
satisfying 0.5<t¥d%1.5. A comparison between predicted and experimen-
tal resistance measurements 1s shown in Figure 5. The errors associated
with predicting resistance from Eq. (53) arise from two separate
sources, those associated with the parameter K and those associated
with the ratio (dg/dﬁ. As shown in Figure 5, Eq. (53) can be used to
predict the linear value of resistance to within an accuracy of
roughly 10%.

Equation (53) can also be used to predict the off-resonance
behavior of resonators. Following the procedures described in Section
2.4.1, the ratio of the cavity-to-incident sound pressure amplitudes
|P€/Pf| and relative phase angles ¢.; can be shown to be

Wres\2
A o) "
o7l K \* + [ | - [whes) 2] = 2)
) [ (&)
K
- tart e
¢, = tan ]T'U;r—is)—z (54Db)



where K is defined by Eq. (52) and u%es? = &2SyV§%. Figures 6 and 7
summarize respectively the comparison between predictions based on
using Eqs. (54a) and (54b) and measured data. As shown in the Figures,
the comparison is excellent.

3.2.2 Weakly Nonlinear Case

Measurements of the weakly nonlinear resistance and reactance
of five resonators are summarized in Figures 8 and 9 respectively.
The nondimensionalized resistance data can be divided into two regimes,
one in which the resistance is virtually independent of incident sound
pressure amplitude (say £<0.1 - this is the reason only e€<0.1 data
was considered in determining the parameter K in Section 3.2.1) and
the other strongly dependent upon it. For €>0.5, the resistance
values appear to converge into a behavior dependent only upon the
nonlinear parameter e. This is in agreement with the behavior predicted
from the model governing equation (see Eq. 18a). The damping or loss
term in Eq. (18a), the coefficient of F, is (K/vRe+e|F|). At very
low values of e, the first term dominates in accord with the data
shown in Fig. 8. For sufficiently large values of &, the nonlinear
term ¢|F| dominates and one would expect the importance of the
individual resonator parameters (t%5d%D%LY) to become unimportant. This
is explicitly shown below in the following empirical curve fit to
the data summarized in Fig. 8,

R* N K 2 d* 2 2
[WJ . ~ ‘[[E} 8<Ge‘> +0.42€+0.61E (55)

where 8(d§/d§2K//Re represents the orifice area based non-dimensional-
ized resonator resistance at e=0. Equation (55) differs negligibly
from the real part of Eq. (33a), derived on the basis of a regular
perturbation expansion for values of €<0.01. For large values of g,
however, Eq. (55) matches considerably more accurately, the measured
data as shown in Figure 8.

According to Eq. (33a), the nondimensionalized reactance
data should decrease with imcreasing incident sound pressure
level from its tuned resonance value of zero at e£=0., The decrease
should be only a function of the nonlinear parameter e,

*
T3 (56)
guide| res ot

The measured reactance data is summarized in Fig. 9. Despite the
scatter in the data which arises because of the extreme sensitivity
of the cosine function near ninety degrees (recall that at resonance,
¢ci=90 degrees), the nondimensionalized reactance data is roughly
dependent only upon the nonlinear parameter €. The model
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prediction Eq. (56) is seen in Fig. 9 to over predict the measure-
ments. As shown in Fig. 9, a "better'" fit to the data is

X ~ £
L 57
(S | s o G

*

In agreement with the resistance data shown in Fig. 8, nonlinear
effects are not important for e<0.1l.

The main findings of this study is that the onset of acoustic
nonlinearity occurs only when the parameter €>0.1 where
£ = 64 (9€/»? Py’%khﬂz] Significant deviations from its linear or
e=0 values do not occur until e€>0.2,

3.3 Nonlinear Regime

The derivation of the nonlinear model described in Section 2.5
assumed the characteristic length L% was independent of both incident
sound pressure level and frequency. Equation (46) provides a con-
venient way to indirectly measure its value. Rewriting it in terms
of the resonator resonant frequency defined by Eq. (23a),

%
C

P

*\2
~ 12.56 <L§i>2 a)res p(‘*‘)resdc (58)

At resonance, where W= wres: the ratio IPC/Pll becomes, only a function
of the amplltude of the incident sound pressure field. Measurements
of the ratio |P&/PY|res Vs /ddeé)z/P are summarized in Figure 10.
Although the slopes of the |P&/P¥|res vs V{JdE)%Z/PT data appear to

be constant, they do exhibit slight variations with resonator geometry.
Comparing the data shown in Fig. 10 with Eq. (58) yields the follow-
ing estimate of the characteristic length (Le),

LE o P T
Te;‘ ~ 0.26 {H? ?)} (59)

The characteristic length defined by Eq. (59) should be viewed with
caution because of the extremely limited data base used in its
determination. For example, the ratio d/D<<1 for all of the
resonator configurations shown in Fig. 10.

The derivation leading to Eq. (59) assumes that the character-
istic length (L&/d is independent of frequency. If this is true,
then the ratio TP*/Pl should vary inversely with frequency as
predicted by Eq. (58) To verify thls the frequency of the
resonator geometry having D=1.905 cm, [%2.54 cm, 7%.051 cm, d%.091 cm
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{the o0 symbol in Fig. 10) was varied from about 300 Hz to 650 Hz
and the corresponding ratios Pé/P{I measured. A comparison
between measurements of |PE/PI| and predictions based on combining
Eqs. (58) and (59) is shown in Fig. 11. The excellent agreement
between prediction and measurement shown verifies that (Le/éﬁ is
independent of both sound pressure level and frequency. With the
characteristic length L& specified by Eq. (59), the final form of
the resonator resistance and reactance follows immediately from
Eqs. (50a) and (50b). Nondimensionalized with respect to gud% they

CERM - -

x*|x_ 019 |007-043nE-209 éE) “fr_esy I+J_(£:>(2,55—2.63E'/~") 61)
ol [ 5(5] dY\ @t/ 9Nd
gla®

The nondimensionalized form of Eqs. (60) and (61) show explic-
itly their dependence upon the parameter E and resonator geometry.
A comparison between predicted and measured resistance and reactance
is shown in Fig. 12 for five different resonator geometries. The
reactance of each configuration is '"tuned" to zero at an incident
sound pressure level of 70 dB by proper adjustment of the sound
frequency. The resistance, as predicted by Eq. (60), is in excellent
agreement with the data, thus confirming the assumptions made in
its derivation. The reactance, as predicted by Eq. (61), is also
in close agreement with data as shown in Fig. 12. Also shown in
Fig. 12 is the close agreement between predicted (via combining
Egs. (45b) and (59)) and measured relative phase between the incident
and cavity sound fields.

As a final verification of the model, the predicted resistance,
reactance and relative phase variation with sound frequency is com-
pared with measurements in Fig. 13. The incident sound pressure
level was maintained at 140 dB and the frequency varied
from about 300 Hz to 650 Hz. The measured phase change with fre-
quency was larger than predicted. For example, between 300 and 650
Hz, the measured phase increased from 76 to 97 degrees, a 21 degree
phase change, while the corresponding predicted phase change is
only about 9 degrees. The same trend was observed for the reactance.
Here the reactance data varied from approximately -2 at
300 Hz to +0.5 at 650 Hz in contrast with the
predicted variation of -1.4 at 350 Hz to -0.06 at 650 Hz.

Part of these differences may be related to nonsinusoidal

wave form 6f the cavity sound field. Observations on the
oscilloscope showed the cavity wave form to be highly distorted
when the incident sound pressure level was 140 dB
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(the corresponding cavity sound pressure level was 129 dB at

404 Hz). Oscilloscope traces of the incident sound pressure
showed it to be reasonably sinusoidal. The measured cavity
phase may contain contributions to the fundamental harmonic
frequency arising from nonlinear interactions not accounted for
in the nonlinear model. Since reactance is proportional to the
cos ¢, these nonlinear induced small errors in phase (e.g. from
Fig. 13, +4.6% error at £ = 300 Hz and -88% error at f = 650Hz),
strongly amplified near 90 degrees, may account for the differ-
ences in predicted and measured values shown in Fig. 13. Figure
13 also shows that both predicted (Eq. 60) and measured resis-
tance are independent of frequency. Since the resistance is
proportional to sin ¢, the errors in phase near 90 degrees are
unimportant. This explains the excellent agreement between
predicted and measured resistance.

In reducing the data, care was taken to account for two
serious sources of measurement error. One is phase and amplitude
distortion of the cavity sound field due to impingement upon the
cavity microphone by the particle velocity (see Fig. (1) during
inflow. The second is flecture of the face plate due to the
excessively high incident SPL's. A detailed accounting of these
effects is summarized in Appendix B. To ensure that the relative
phase measurements were unaffected by temperature increases due to
the high SPL levels, a thermister probe was installed in the cavity.
Temperature measurements showed negligible changes - less than 2
degrees Fahrenheit for values of Pj between 70 and 160 dB.

The experimentally determined characteristic length (LE)
provides direct information on the value of the discharge coefficient
Cp which connects the maximum particle velocity jetting at the
orifice vena contracta to its orifice area-averaged value. The
spherical inflow model forces the maximum vena contracta particle
velocity to occur at the hemispherical surface 2nL%%. It follows,
via the continuity of particle volume flow velocity, that

* *\ 2
%’:na)(' amLe? = *ori‘ﬂ-d*z > Cp = Qori = 8<Le
%ﬁwx d*
Substituting Eq. (59) for the ratio L§/d"yields
~ 2 [T*
CD_ 0.545 l:l+§. F)] (62)

a value remarkably close to that measured by orifices exposed to
steady-state flow (see e.g., Fig. E-1 of the study by Rogers and Hersh®).

It is clear from a comparison between Eqs. (60) and (61) that

X
|R]>>|X| regardless of the frequency of the incident sound (the
constraint that E<<1 restricts the maximum value of the frequency).
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Thus, from a sound absorption application viewpoint, Helmholtz resona
tors operate as broadband absorbers in the high SPL range. To clarif:
this, consider a wall containing an array of Helmholtz resonators
exposed- to intense sound. The driving sound field consists of

both incident and reflected waves. The fraction of incident

acoustic energy (o) absorbed by the Helmholtz resonators is a
function of the wall impedance and may be written'®

.+l

ol

Equatlons (60 and (61) rewrltten in terms of pcd?ﬁ{ be used to esti-

(63)

mate (R)ori/fC and (X)% ri/fc The quantity o=( is the
total orifice open area to cavity area ratio (for cylindrical cavi-
ties). It 1s assumed that the array of Helmholtz resonators are

sufficiently far apart from thelr neighbors so that they respond
independently. Since QB) i/Ffc" is independent of frequency (see
Fig. 13), and | (R)% rl/pch>>|(X)or1/pcd it is clear that the
absorption coeff1c1ent (a) is very 1nsen51t1ve to frequency. It
follows that Helmholtz resonators exposed to intense sound are
broadband sound absorbers. This is in sharp contrast to their be-
havior at low sound amplitudes where generally |R/Jd|<<|X7dd|
except near resonance.

The use of Eqs. (60) and (61) in sound absorption calculations
is not straight forward. The complexity arises in specifying the
incident driving sound amplitude P{ With regard to the above
application of a sound wave reflecting from a wall containing an
array of Helmholtz resonators, the proper incident dr1V1n§ pressure
amplitude is PI+PF(PY). Here the reflected sound field Pf (Pl) is
written explicitly as a function of the incident sound to empha51ze
the nonlinearity of the Helmholtz wall impedance Z(P1+Pr),

PP _ e )] (64)
Wi+ ur (P o

The quantity [Z(P +Pr)] is the orifice-area averaged impedance, o©

is the percent open area defined earlier and u1 and u?(PI) are the
incident and reflected sound particle veloc1t1es respectively (far
from the orifice). Assuming that P;i* and P¥(P}) are plane waves, the
particle velocities are related to their driving pressure fields as

p* = f)*c*u*; and  PE(PY) = - gk (PD)
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Substltutin gese velocity fields into Eq. (64) and solving for
the ratio P P1)/P} yields

P:(Pf) _ W /8 1] i [ / ] (65)
Pi* [(R :m / P*C“O' + |] + 1 [(X)Or‘l/ C*d]

To correctly specify P?, an iterative approach to solving Eq. (65)
is required. For example, assume that the driving pressure is the
incident sound pressure P Substitute P1 into Eq. (65) to predict
Py. Then replace Pi by P1+Pr and substltute this value back into
Eq. (65) to obtain a revised estimate of P¥. Repeat this process
until Pr becomes virtually constant. In this application, the
correct driving sound pressure amplitude incident to the resonator
orifice is P§+Pr(P1) This value of the driving pressure amplitude
would be used in calculating the parameter E in Eqs. (60) and (61).
With regards to interpreting the data shown in Figures 10-13, the
proper incident driving pressure amplitude is 2P§ corresponding to
pressure doubling at the incident hard wall microphone location
(see Fig. 1). By locating the incident microphone far from the
resonator orifice, the complexities described above have been avoided.

4. CONCLUSIONS

The acoustic behavior of Helmholtz resonators has been divided
into three categories corresponding to (1) very weak, (2) moderately
weak and (3) very intense incident sound pressure amplitude. The
first two categories are characterized by a "linear" or almost
"linear'" impedance and the third by a '"nonlinear" impedance. The
"linear" and almost "linear" regimes are defined by the small
parameter & expressed below in terms of the resonator geometry,
incident sound pressure amplitude Pj and circular frequency uw% as

£=64|T+__o085 o

d¥ 1+ o.625<_cDi_* fi‘(ufdjz

The quantities t¥and d*represent the orifice thickness and (circular)
diameter respectively; D¥is the gylindrical) cavity diameter. The
corresponding nondimensionalized orifice area-averaged resistance
and reactance at resonance are defined empirically by Eqs. (55) and
(57), rewritten below in a slightly more convenient form, as

(Rg*:fs ~ t[ofli;z;} - (;a>(°42+06'8>

(X)reSN w*d*) +_ o085 | g
ec. cp\ ¥ d* (+oezs(d*) on
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where Cp is the Reynolds number dependent orifice ‘discharge
coefficient defined by Eq. (26). Both data and model prediction show
that the effects of weak nonlinearity are to increase resistance

and deecrease reactance. The model shows resistance to arise from

two sources, one being viscous losses that are independent of particle
velocity and the other convective inertial losses that are linearly
proportional to particle velocity. The decrease in reactance arises
from a reduction of the orifice effective inertia length (de*). 1In
accord with the conclusions of Ingard and Ising, the reduction of

d& is believed to be related to particle velocity jetting generated

by the fluid nonlinear inertia. It is clear that, providing ¢

is small, both the resistance and reactance depend weakly upon the
sound amplitude Pj*. Significant deviations of the impedance

from its "linear" or =0 value do not occur until g£>0.2. As an
example, consider a cavity-backed resonator with d%1.5x10° meters
(~0.06'"), t*/d*=0.2 and (d*/D*.0.1) exposed to an incident sound field
at 1,000 Hz. Significant deviations occur when the incident sound
pressure level is equal to or greater than about 85 dB.

The nonlinear regime is defined by the small parameter E
expressed below in terms of the resonator geometry and incident

sound field as
E = 0.26 1+L(_7—2) [AGAN
9 a% Pi*

Using the same resonator geometry and frequency as described above,
nonlinear effects become important when the incident sound pressure
level is equal to or greater than about 130 dB. The corresponding
resistance and reactance follow from Eqs. (60) and (61) rewritten

below as
R* | . l P
Q*C* .57 cp P*C*z
and
* (w*d*> 4
[X *J ~ )C* 0.07-0.43(n E -2 (2.55-2.63E )
¥* 2
gre (1.57)* \f8¢p
where

a = 2.09 »u(;c_*) ¥, __o85 w*res)z
9 \d* 3* |+ 0.625(91) w*
D'l-

and ¢y o.545[|+% _’g;)]
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is the orifice high SPL discharge coefficient. The resistance is
shown both theoretically and experimentally to be independent of
frequency and proportional to the square root of the incident sound
amplitude. Since |W7d@ﬂ>>|xgd%ﬂ,Helmholtz resonators absorb sound
in a broadband manner in contrast to its narrowband sound absorption

at low pressure levels.
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TABLE I. SUMMARY OF RESONATOR GEOMETRIES TESTED
p* L* a* T* (77 d) (d7D) (d7L)
(cm) (cm) (cm) (cm)
1.905 1.27  0.091  0.025 0.278 0.048 0.072
1.27  0.091  0.051 0.558 0.048 0.072
2.54  0.091  0.025 0.278 0.048 0.036
2.54  0.178  0.102 0.573 0.093 0.070
2.54  0.356  0.102 0.286 0.187 0.140
2.54  0.114  0.051 0.071 0.375 0.281
2.54  0.178  0.051 0.286 0.093 0.070
5.08  0.178  0.051 0.287 0.093 0.036
5.08  0.356  0.051 0.143 0.187 0.070
3,175  1.27  0.091 ~ 0.025 0.278 0. 029 0.072
2.54  0.178  0.025 0.140 0.056 0.070
0.356  0.025 0.070 0.112 0.140
0.051 0.143
0.102 0.278
0.203 0.570
0.406 1.140
0.714  0.051 0.071 0.225 0.281
J i 0.102 0.143 l l
0.203 0.284
ST08 Z.54  0.714  0.102 0,143 07141 0,781
35.81  0.714  0.102 0.143 0.141 0.187
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TABLE II.
a* ™ L* D* fres
(cm) (cm) (cm) (cm) (Hz)
0.178 0.025 1.270 1.905 1058
" 0.051 2.540 " 682
" " 3.810 " 561
" " 5.080 " 476
0.356 0.025 2.540 " 1153
1" " 1t 175 697
" 0.051 " 905 1097
" " 3.810 " 880
" " 5,080 " 746
" " 2.540 3.175 663
" w4445 v 494
0.714 0.025 3.810 5.080 504
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|PS/P% I max K
(measured)

.552
.444
.440
.408
.673
.665
.622
.585
.540
.541
.504
.691

SUMMARY OF RESONATOR DATA USED TO DETERMINE PARAMETER K

|pe/PY]
(predicted)
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APPENDIX A

DERIVATION OF NONLINEAR FOURIER COEFFICIENTS

A detailed derivation of Eq. (42) and the subsequent calcula-
tion of the fundamental Fourier coefficients a; and b; follow.

The derivation starts from Eq. (39a). Recall from the dis-
cussion following Eq. (39a) that expansion of the function G(t;E)
in a regular power series of E leads to the approximate solutions
Go(t) and G, (t) defined by Eq. (41). These solutions become
singular at t=(2n-1)7/2. An approximate solution to G(t;E) is
derived below valid throughout the half-cycle (4n-1)w/2<t<(dn+1l)w/2
(hereafter n=0 without loss of generality).

The derivation proceeds as follows. The half-cycle -w/2<t<n/2
is divided into the six regions shown in Fig. A-1. Region 1 is
defined by the interval 0<t<w/4, Region 2 by w/4<t<T where T will
be specified later and Region 3 by T<t<m/2. Regions -1, -2 and -3
are defined by the intervals -w/4<t<0, -T<t<w/4, and -w/2<t<-T
respectively.

It will prove convenient to rescale Eq. (39a) by introducing
the following transformations,

G(5E)=V2 g(t5s) 5 s= 2 E (A-1)

resulting in

299*°13* <—*———2"Le*°ﬂ>3 = - sin(t) (A-2)

V*w*Z

The absolute value operator |( )| is removed because only particle
inflow (g>0) is considered. Since the independent variable t is
unaffected by the above transformation, the regions defined in
Fig. A-1 still apply. An approximate solution to Eq. (A-2) is
derived valid in Regions 1 and -1 by expanding g(t;s) as follows,

gltss)=ge(®)+s g &)+ (A-3)

Substituting Eq. (A-3) into Eq. (A-2) and collecting coefficients
of the first two powers of s yields

21 L%

23,8'0 = —.s'm(t) and 2 3,3, +25.3, =—3,— - ° (A-4)

VLo 2
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Approximate solutions to Eg.(A-4) are
- . ~ | omle t 4 ~
9g- *®) ‘/cos(t 5 3,(4:) Tw‘:an (+)- I iz ) ( 12) (A-5)

In deriving gi(t), the function go(t) was approximated by (1-t2/4).
This approximation restricts the solution g;(t) to Regions 1 and -1.

To derive approximate solutions valid in Region 2, Eq. (A-2)
is transformed as follows,

9(T58) = g(*;59); z=%—+— (A-6)

Under these transformations, Eq. (A-Z) becomes

d2 2rLed? — o499 - _
s[dgz <7r [ 8} 3 ﬁ = COS('&) (A_7)

Expanding g(t;s) in a regular perturbation power series of s,

9(T55)= g.(T)+ s9.(T)+ o(s?) (A-8)

and substituting into Eq. (A-7) yields the following approximate
solutions

3 (’C) VSIY\(’E) 3 (’Z,')N f cot(’ZI)+ 23’55::1) ’g "51; +‘/i( )] (A-9)

In the derivation of g;(t), go(T) was approximated by v/T(1-12/12).
Here A is a constant of integration. To match the solutions solutions
go(t)+sgi(t) at t=w/4 to go(T)+sgi(t) at t=7/4, the interface between
Regions 1 and 2, the constant A =-0.59.

Observe that Eq. (A-9) is singular at t=0(or t=7/2). It is
important to understand that the singularity occurs because the
power series expansion used in its derivation (see Eq. A-8) assumes
that throughout the cycle

8[3 eriidl )3 « 33| (a-10)
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It is easy to show that the perturbation expansion given by Eq.
(A-8) generates approximate solutions that violate Eq. (A-10).
Consider the solution described by Eq. (A-9). Assuming that both . -
T and s are small, g(t;s)=go(T)=yYT, Wwhich upon substituting into
Eq. (A-10) and retaining only important terms yields the following
inequality

5«
2T %

Obviously, this is not satisfied for 1 sufficiently small. The
failure of the regular perturbation expansion described by Eq. (A-8)
to satisfy the inequality described by Eq. (A-10) is manifested

by the appearance of the singularities in Eq. (A-9). The method of
singular perturbation theory is used to derive an approximate
solution valid in Region 3. The singularities are removed by
appropriate rescaling of the dependent and independent variables

so that in Region 3 the terms on the LHS of Eq. (A-10) are of the
same order as the nonlinear term on the RHS. To accomplish this,
the following transformations are introduced

n

3(7735) =s"Y(n); 7= /g (A-11)

Substituting these quantities into Eq. (A-7) yields

_s* 2y dY 4 g| s JTY +<27T’—’5-¢3&> s™Y
d77 d’zz V*w*2

- _ n ~ 2n ;2
= cos(s 7) I+ 8 Z?_L

(A-12)

Since Region 3 is near t=0(or t=m/2) it is reasonable to assume that
the two highest derivatives are of equal order. This occurs when

Z2m-—n=Il*tm—-2n—3>m=i—-n

Replacing m by 1-n in Eq. (A-12) yields, after some rearrangement,

2 - n
g23n |d%Y _oydY | 4 famLE 2>5‘°' "o+ sy (A-13)

d72 d7 V¥ %2 2
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Matching the leading terms on both sides
2-3n=0—>n=2/3, m=1Y3

Thus the appropriate equation governing the behavior of the particle
velocity near t=0 (Region 3 in Fig. A-1) is

dY _2ydY , % ZW_'—"i)Y: —l+54/3,17_2+0(58/3> (A-14)
d;72 d?? V% 2

where from Eq. (A-11),

Syl %Y (s) s e
q(Ts )= % Y(738) s 7=

(A-15)

The quantity T in Fig. A-1 is identified by appropriate
matching of the solution in Region 2 to the solution of Eq. (A-14).
As a guide to the solution of Eq. (A-14), Eq. (A-9) is written,
for 1 small,

3(7:38)3&(7)* 531@)& ﬁ(l —T'Z ’C")+s[4!f _ 0.59 2TrL’é€2>j|

Vf_ V*w-x-z

Using Eq. (A-15) to replace T by n and collecting coefficients of
the various fractional powers of s,

* ¥\ o
9= /S{V—Jrl _327%} —He (2\/15:;;)5/3[2\[_ 4| +6%’57 } ol @

Comparing Eq. (A-16) to Eq. (A-15) suggests the following expansion
for Y(n;s) for proper matching,

Y(ps9)s Yo(p)+s% Y (p)+ s Yalp)+ (A-17)

Substituting Eq. (A-17) into Eq. (A-14), and collecting the coefficients
of the first two powers of s yields

&Y -2YdY% (A-18)
I 97
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dd—zztg;—z— ng;z— (Yo V.)'—“O (A-19)

Integrating with respect to n,

d ¥ 2 |
dy —T =-ptA (A-20)
dY,

T, —2TT =A (A-21)

1

where ( )'=d/dn( ) and Ay and A, are constants of integration. The
solution of Eq. (A-20) can be expressed in terms of the Airy function

Aj(n) as
() = = 281 (7)/Ai ()

providing the constant Ap=0. A graph of its behavior is shown in
Fig. A-2. The asymptotic behavior of Yy(n) can be shown (see
Chapter 10 of the Handbook of Mathematical Functions published by
NBS) to be

Lir:zuim ‘l’o(?): ‘[7‘+ 417 _ 32575/2 +0 (7'4) (A-22)

With Yg(n) known, Eq. (A-21) can be solved numerically to determine
Yi(n). A plot of Yi(n) is shown in Fig. A-3. Its asymptotic be-
havior follows immediately upon substitution of Eq. (A-22)

into Eq. (A-21) to yield,

Limit VY = —A, o 4+ 25 + -5 -
o [ZW 7° 6‘*74 ) o

The method of singular perturbation theory requires that the
asymptotic behavior of the Region 3 function Y(n;s) merge smoothly
into the Region 2 function g(t;s). Although mathematically, the
matching occurs asymptotically, that is in the limit as n-«, numeri-
cally, matching occurs for finite values (often less than 5) of the
independent variable. Combining Eqs. (A-15), (A-17), (A-22) and
(A-23) yields the following asymptotic behavior for the Region 3
functions,
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mt 371952 Ty -m| Vo o -edm| e
sy

Comparing Eq. (A-24) above with Eq. (A-16) which represents the
Region 2 solution written in terms of n, matching occurs providing
the constant

= 1.18 [2mLec “) (A-25)

V* *2

The functions Yg(n) and Y; (n) are shown in Figures A-2 and
A-3 respectively to be within one percent of their asymptotic
behavior at n=2. This value of n is used to define Region 3.
Substituting of n=2 in Eq. (A-15) yields t=2s??. From Eq. (A-6)
and Fig. A-1, this translates into t=Tzw/2-2s?°®., Thus an approximate
solution valid throughout 0<t<w/2 has been constructed. In a similar
manner, approximate solutions can be constructed for Regions -1,
-2, and -3. Foregoing the details, the various solutions are
described below:

. -,
Reqmn-4 14 2t2o:

=~ fos an x2 (A-26)
g(t;9) q.(T)+s9, (V)= |cos (T)- s[ tan(t)- <2V* *2>(-{: + f }

i
Req'\on 2, 2E2/5<7.'<T(7: %+'l:1

(’L‘ s) 3('1:)+33,(1‘)~ \/_O ) 4'[ ?15_9 <27r*L*2 (A-27)

Region -3; 0¢ 7 <2 (77 T/E’/ﬂ

Y (7) ~ Y, (7)+ 5 Y.—(77) (A-28)

The notation Y denotes the function is valid_in Region_-3; the (Y )
denotes Region 3. Graphs of the functions Yg(n) and Yl(n) are
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shown in Figs. (A-2) and (A-3) respectively.

The above approximate solutions are valid throughout the
half-cycle -w/2<t<w/2. The corresponding fundamental harmonic
coefficients a, and b, defined below as

m

2

a,(E)= % G(t;E) cost)dt

b,(E) = ﬁ_/%a(é;fz) sin(tdt

are evaluated in the usual way. The results of the integration
are

8, (E)2 .57 + O.19 E % + O<E2> (A-29)
b(E)= E [ 0.07-0.43ln(E)- 21;'-:.:)(2 .55 - zesr—:/s)] (A- 30)

The major contribution to a;(E) comes from the regions -w/4<t<m/4
while the major contribution to b,;(E) comes from the regions
-m/2<t<-w/4 and w/4<t<m/2.

56



=

LS

EQ.(A~28)-—>

7-et) 1>

Note: T = (‘?z-zs%)

FIGURE A-1.

IncreaS'ms Time —>

Q@ @ @ ® @ |®
Eq.(A-27) Eq.(A-26) Eq (A-5) Ea.(A-9) <T—Eas.(A-15)& (A1)
T-Ta+t +<0 t>0 T=Y% -t « 7=("/z-t)
' 5%
% -1 = o % T %

DEFINITION OF HALF-CYCLE SUBREGIONS WITHIN WHICH INDICATED SOLUTIONS ARE VALID



1.4 1

o8t

06+

0.21

Asymptotic Solu‘hon
[ Y P 5 .
Y. ()~ ¥y + 47 32p% +o(7™")

/i——Asympi-ohc Soluhon
/ Y, ()~ - 47 327%+o(7 9
[
o; aa L; lk io ;4 is
7

FIGURE A-2. DEFINITION OF THE FUNCTIONS Y,*(n) and Y5 (n)

58



08+

0.6+

0414

o271

- 0.2+

-0.41

-06-

-0.84

AsymP+o+nc, Solution

¥, (n) [, 1 _25 -
Nat=n ey
\\\\
~

gt (7 /( 2 \;: L"C"

//
7
/
//<——— Asymptetic  Solution
/ Yl‘:(r') N—I.IB[__I -t 4+ = ]"'0(7 5)
2wl 2 2
Jr_*:i?ff) 7 4y 647
5 o4 o8 2 16 2.0 24
n

FIGURE A-3. DEFINITIONS OF THE FUNCTIONS Y:*(n) and Y[ (n)

59



APPENDIX B
CORRECTION OF HIGH SPL DATA FOR THIN ORIFICE FACE PLATES

At very hlgh 1nc1dent sound pressure levels (150 dB and
hlgher), the measured data showed that the very thin (7%0.01")
orifice face sheets did not correlate well with the parameter E.
This could be attributed to any, or p0551b1y a combination of,
three phenomena.

(1) Cross-modulation products of higher harmonics of the cavity
sound field could combine with the transmitted fundamental signal,
resulting in substantial phase shifts, even if the level of such
cross modulation products were 20 dB or more below that of the
fundamental. Quantitative evaluation of this effect would require
knowledge of the amplitudes and phases of all the harmonics, as well
as an understanding of the non-linear process which generates the
cross modulation. Since at incident levels of 150-160 dB, where
phase correlation is poorest, the incident field contains consider-
able 2nd harmonic distortion, there is probably some cross modulation
occurring in the orifice as well as within the cavity, further com-
pounding the difficulties.

(2) Due to the physical size of the microphones required for use
at 70 dB incident level (1/2' diameter) it is necessary to mount the
cavity microphone at the rear of the cavity. At low to moderate
incident sound levels, the cavity microphone is expected to measure
the response of the entire fluid contained within the cavity. At
high sound pressure levels, however, the influx of fluid into the
cavity is characterized by strong jetting. If the jet does not
decay before reaching the microphone, a stagnation pressure velocity
would result from the impingement of the jet on the microphone
diaphragm, giving an altered phase angle and effective cavity sound
pressure level. Observation of the cavity sound pressure signal

on an osc1%}oscope at high incident level, reveals, for the larger
values of d/L an instability in the wave form on one half cycle,
which we belleve to be related to this phenomenon.

In an attempt to quantify this effect, a small hole was
drilled into the side of one of the cavities, into which a 1/8"
diameter microphone was inserted. The output from this microphone
and that from the 1/2" microphone at the back of the cavity were observ-
ed simultaneously on the oscilloscope as the incident sound pressure
level was increased from 90 to 155 dB. At the higher levels, the
wave instability reappeared on the 1/2" microphone trace, but was
absent from the 1/8" microphone trace. Although the general wave
shape of the two microphone signals was similar and there appeared
to be a slight advance in phase of the 1/2" microphone signal with
increasing incident sound pressure level, the phase and amplitude
of the 1/8" microphone signal was judged too unreliable to make con-
clusive judgements since it was extremely sensitive to slight changes
in position.
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(3) It was observed that the cavities with small values of t*

and L* exhibited the poorest phase correlation. This suggested

that the face plate of the cavity was being flexed by the incident
sound pressure, effectively modulating the volume of the cavity

and hence increasing the cavity pressure in phase with the incident
pressure. This would have the effect of both advancing the phase
of the cavity sound field and increasing the cavity sound pressure
level.

“As a test of this possiblility, the case that exhibited the
poorest correlation, (D¥= 1.25", [¥= 0.5", d*= .036" and ™= .010)
was remeasured with the orifice covered. At low incident levels,
the face plate flexure was inconsequential. However, at 150 dB,
it resulted in a phase advance of 28 degrees and a cavity pressure
increase of 1.5 dB.

These results were sufficiently encouraging that several of
the other samples which had given poor phase correlations were re-
measured using this technique. In each case the phase correlation
was improved, but the degree of improvement depended upon the face
plate thickness and cavity dimensions. Results of the most signifi-
cantly improved cases are plotted in Figure B-1 for phase.

The better improvement in phase correlation achieved with the
thinner face plates and smaller orifice diameters suggests that
Phenomena #2 § #3 are both affecting the phase, and to a lesser
extent the amplitude of the cavity sound pressure. We believe that
without properly accounting for pressure change on the face plate
due to flow through the orifice, the plate flexing COrregt}on is
excessive. For the case of the thin face plate, small d/D models,
this excess is minimal because of low airflow due to the high
orifice resistance. Hence the phase correlation has been improved
for these models.

In order to obtain a better understanding of the jet impinge-
ment phenomenon, a resonator with the dimensions p¥= 75", L*= .75",
d¥= .07", 1%= .02" was tested with the standard 1/2" microphone at
the back of the cavity and the 1/8" microphone at the side of the
cavity. The outputs from these two microphone were fed to the AD-YU
Phase meter and simultaneously observed on the dual trace oscilloscope.
The measurement procedure was as follows. First, the frequency of
the incident sound was tuned at a low level to the resonance fre-
quency. The level was then increased until the onset of the wave
instability (from the output from the 1/2" microphone signal)
appeared on the oscilloscope. It was observed (see Fig. B-2)} that the
instability occurred in the trough of the oscilloscope wave at an
incident level of 145 dB. As the level was increased, the instability
moved forward on the wave, reaching the crest of the wave at 150 dB
and starting down the leading edge when the system limitation for the
particular drive frequency was reached at 153 dB. This suggests a
sound pressure level dependent delay time for whatever is causing the
instability at the microphone. The jet from the orifice is an
obvious candidate, since it would travel from the orifice to the
microphone at an average velocity related to the particle velocity
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in the orifice.

To support the hypothesis that the jet impingement caused the
nonlinear phase and amplitude shifts, the average jet travel time
from the orifice to the cavity backing was measured and correlated
with the particle velocity u in the orifice. Since the jet enters
the cavity at the maximum (vena contracta) value of particle velocity,
it would originate at a time corresponding to a positive-going
zero crossing of the cavity pressure (negative going on the scope
trace, since the condenser microphone by its nature inverts the signal).
The delay of the instability by some fraction (possibly >1) of a
wavelength on the trace could then be related to its travel time if
we were able to identify the zero crossing associated with each
instability. To identify this, the position in time of each
instability was noted while the oscilloscope trace was started at
the negative-going zero crossing. Holding the amplitude constant,
the frequency was shifted downward 10%. As expected, the instabilities
relative position on the wave changed; the position in time of only
one instaiblity remained constant, as illustrated by the two sketches
shown in Figure B-3. One may conclude that the instability which
stayed constant in time was due to the high particle velocity which
occurred at the beginning of the oscilloscope trace, so by knowing
the oscilloscope sweep speed, the mean travel time of the jet from
the orifice to the microphone at the back of the cavity may be
determined.

As an example, for the model checked, at an incident level of
151 dB, the delay of the jet arrival was found, from the oscilloscope,
to be 3/4 wavelength at 784 Hz, corresponding to a travel time of
0.96 millisecond. Since the cavity depth is 0.75" (or 0.019 meters),
this corresponds to a mean jet velocity of 20 meters per second.
The peak orifice velocity, in accordance with Eq. (44), would, at
151 dB, be 33.5 meters per second. This would indicate an average
jet speed of 60% maximum, which is not unreasonable. If we estimate
a linear deceleration in the cavity, this would result in a peak
pressure level of 122.5 dB at the microphone, as opposed to a peak
level of 147 dB for the uncontaminated wave, or approximately 19%
contribution. From the appearance of the oscilloscope trace this
seems to be a high estimate, demonstrating the approximate nature of
the linear deceleration assumption.

The series of sketches in Figure B-3 shows how this level
dependent travel time can contaminate the phase data from the two
microphone method unless precautions are taken to prevent jet im-
pingement on the cavity microphone. Note that there is (obviously)
one jet instability per wave length, and that these would be ex-
pected to have the form of a somewhat unstabile positive pressure
pulse train, whose relative position on the cavity pressure wave
depends on the mean travel time, and hence on the incident pressure,
the cavity depth and the decay rate of the jet.

Since the composite signal is processed through a narrow band

filter, only the Fourier component at the test frequency will affect
the final results. This is displayed in Fig. B-3. It will be noted
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that the relative phase of this signal will follow the relative
position of the pulse train.

Figure B-4 shows the position of the pulses at three sound
levels for the model tested at incident levels of 145, 148, 150
and 153 dB. Visual estimate of the amplitude of the jet pulse is
approximately 3% of the total wave. If we estimate that the
fundamental component is 1% of the total, the phase of the contam-
inated signal relative to the uncontaminated would be as shown in
the following table, for the case illustrated in Figure BS5.

SPLinc ASPLinc Ad ¢ (total)
145 40dB 90° .6°
148 40dB 30° .3°
150 4048 -60° -.5°
153 404B -120° -.5°

If the amplitude of the contaminating wave were actually 3%
of the total, the phase angle error would be increased proportionately,
and this fraction could be even higher for small cavity depths and
large orifices.

One previously unexplained measurement inconsistency can now
be at least qualitatively understood. In some of the cavities tested
the phase was noted to approach 90° as the level was increased, and
then, at very high levels, to decrease again, causing reactance from
Dean's model to become much too negative to be physically meaningful.
As shown earlier, this was attributable in part to face plate flexture
and in part to jet impingement. However, it was observed that the
phase would occasionally go past 90° at very high levels. This effect
could not be explained by face plate flexing. However, we see now
that if the level, frequency and orifice to microphone distance are
present in the correct combination to allow the jets to arrive at
the microphone during the negative half cycles of the cavity pressure,
a positive phase purturbation results.

Conclusion

We now see that in order to obtain phase and reactance data
with sufficient accuracy to test the theoretical model at high
incident sound levels, some basic limiting characteristic of the
two microphone method not previously considered in the literature
will have to be either avoided or quantified.

The cavity flexure problem is probably not too important,
since the very thin unsupported orifice plates for which it appears
to be a dominant factor are probably not feasible for practical
application. It is also a real effect which depends on the geometry
of the test specimen rather than the measurement procedure.

The jet impingement and cross modulation phenomena, on the
other hand, represent effects which are detected inside the cavity,
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but which have no bearing on the true surface impedance of the
cavity as seen from the incident sides. "~ The cross modulation

problem is unavoidable. The jet impingement problem might be

avoided by changing the microphone location.
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a) Uncontaminated Wave On Oscilloscope

b) Pulse Train Of Jet Arrivals; Moves To The Left
As Incident Level Is Increased

c) Approximate Fourier Component Of Pulse Train At Test
Frequency; Phase Advances As Incident Level Is Increased

FIGURE B-3. PHASE RELATIONSHIP OF FUNDAMENTAL FOURIER COMPONENT
OF JET PULSE TO UNCONTAMINATED WAVE
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FIGURE B-4. TIME OF JET ARRIVAL AS INCIDENT LEVEL INCREASES
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